a(t) (ft/sec ²)	v(t) (ft/sec)	(sec)
J untal	-20	0
5	-30	15
2	-20	25
	-14	30
2	-10	35
4	0	50
2	10	60

- 6 A car travels on a straight track. During the time interval $0 \le t \le 60$ seconds, the car's velocity ν , measured in feet per second, and acceleration a, measured in feet per second per second, are continuous functions. The table above shows selected values of these functions.
- (a) Using appropriate units, explain the meaning of $\int_{30}^{60} |v(t)| dt$ in terms of the car's motion. Approximate $\int_{30}^{60} |v(t)| dt$ using a trapezoidal approximation with the three subintervals determined by the table.
- (b) Using appropriate units, explain the meaning of $\int_0^{30} a(t) dt$ in terms of the car's motion. Find the exact value of $\int_0^{30} a(t) dt$.
- (c) For 0 < t < 60, must there be a time t when v(t) = -5? Justify your answer.
- (d) For 0 < t < 60, must there be a time t when a(t) = 0? Justify your answer.