- (a) Find the time t at which the particle is farthest to the left. Justify your answer. - (b) Find the value of the constant A for which x(t) satisfies the equation Ax''(t) + x'(t) + x(t) = 0 for $0 < t < 2\pi$. | t (minutes) | 0 | 2 | 5 | 7 | 11 | 12 | |-------------------------|-----|-----|-----|-----|-----|-----| | r'(t) (feet per minute) | 5.7 | 4.0 | 2.0 | 1.2 | 0.6 | 0.5 | J/Z. 5. The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For 0 < t < 12, the graph of r is concave down. The table above gives selected values of the rate of change, r'(t), of the radius of the balloon over the time interval 0 ≤ t ≤ 12. The radius of the balloon is 30 feet when t = 5. (Note: The volume of a sphere of radius r is given by V = 4/3 πr³.) - (a) Estimate the radius of the balloon when t = 5.4 using the tangent line approximation at t = 5. Is your estimate greater than or less than the true value? Give a reason for your answer. - (b) Find the rate of change of the volume of the balloon with respect to time when t = 5. Indicate units of measure. - (c) Use a right Riemann sum with the five subintervals indicated by the data in the table to approximate $\int_0^{12} r'(t) dt$. Using correct units, explain the meaning of $\int_0^{12} r'(t) dt$ in terms of the radius of the balloon. - (d) Is your approximation in part (c) greater than or less than $\int_0^{12} r'(t) dt$? Give a reason for your answer.